

50

Refactoring or Upfront design?

Pascal Van Cauwenberghe
Lesire Software Engineering

Maria Theresiastraat 99
3000 Leuven

Belgium
+32 16 299727
pvc@lesire.com

ABSTRACT
Among supporters and detractors of XP the debate rages
whether upfront design or incremental design combined
with refactoring are the optimal methods of implementing
systems.

This paper argues that neither method is clearly better in
every circumstance. Rather, the experienced software
engineer will use a combination of both methods.

This paper argues that the “cost of change” curve
presented in “Extreme Programming Explained”[1], does
not replace the classic “cost of fixing errors” curve
presented by Barry Boehm in [2]. Rather, XP is a method
of attacking the costs described by this curve.

XP, as an incremental method of software engineering, is
only applicable in circumstances where the cost of
implementing functionalities does not grow rapidly as
development progresses. Some heuristics and examples
for deciding when to use each technique are presented.

Keywords
Cost of change, upfront design, software engineering
economics

1 INTRODUCTION
Boehm presented the classic cost curve shown below in
“Software Engineering Economics”. As we progress from
analysis, through to design, coding, testing and
production, the cost of fixing a problem rises. Note that
the sharpest rise occurs when the system is released and
distributed to its customers.

In “Extreme Programming Explained”, Kent Beck argues
this curve no longer represents the current state of
software engineering. Rather, this curve is said to be flat.
Two remarks can be made:

- Originally, this curve represented the cost of
fixing errors , introduced in earlier phases of a
project. Kent Beck presents the curve as the
“cost of change” curve.

- In his online paper “Reexamining the cost of
change curve”[3], Alistair Cockburn
demonstrates the cost of fixing errors still rises
rapidly as the project progresses.

2 DOES THIS CURVE INVALIDATE XP?
If this curve is still valid, does this mean XP is invalid? I

will argue it is not. Several of the XP practices
specifically ensure that the costs associated with this
curve are kept minimal:

- Unit testing and test-first design ensure that bugs
are found quickly when they are cheap to fix

- On-site customer and functional testing ensure
the analysis and specification of the system is
precise and up-to-date with business
requirements.

- Pair programming finds bugs quickly and
spreads knowledge.

- Refactoring and “once and only once” ensures
the system remains well-designed and easy to
change.

- Regular releases gives regular customer
feedback and forces the team to make the
“release to production” and maintenance phases
(where the cost of fixing errors rises
dramatically) as cheap as possible.

Thus, XP attacks the roots of the high cost of fixing errors
(with good specifications, good designs, good
implementation and fast feedback). Furthermore , by using
very short cycle times, the cost is never allowed to rise
very high.

Analysis Design Code Test Deployment

Cost of fixing errors

51

3 NOT SO EXTREME PROGRAMMING
Note that, with the exception of the very short cycle times
and pair programming (which in XP replaces the
inspections that are accepted in most methodologies),
these practices are not very original nor extreme.

While errors are most costly to fix when found in later
phases, each later phase is more likely to find errors in
previous phases. This is because each phase produces a
more concrete, more tangible, more testable output.
Therefore, we need an iterative process that incorporates
feedback to improve earlier work.

4 ITERATIVE VS INCREMENTAL
The well-known “waterfall” method is rarely used, even
by those who claim (or are forced) to use it. Most
development methods are incremental and iterative.
What do those words mean?

Iterative = repeating the same task to improve its output.

Incremental = dividing a task into small tasks, which are
completed one by one (sequentially or in parallel).

Let’s see how different types of methods use iterations
and increments.

Waterfall:

Analyze, design, code, integrate, test, done!

No iterations, no increments, no feedback, everything
works the first time.

Classic RUP-like process:

Analyze until 70-80% done. Start the design phase, but
keep updating the analysis with any feedback you
receive. Design until 70-80% done. Start the coding
phase, but keep improving with feedback.

And so on for the other phases.

This is an iterative process, feedback is used to improve
the work done. The process is not incremental, except in
the coding and integration phases, where some parts of
the application may be delivered incrementally.

Incremental architecture-driven process:

Analyze the application until 70-80% done. Design the
application so that the architecture and high risk elements
are relatively complete. Define functional groups. The
analysis and design are refined as the project progresses.

For each functional group, a detailed analysis, a detailed
design, coding, integration, testing is done. This
increment is handled like a small RUP-like project, with
iterations to improve the output. When the functional
group is finished it is delivered as an increment to the
customer.

We have an iterative first step, which looks at the whole
application. The application is then delivered
incrementally, developing each increment using an
iterative process.

XP process:

Gather an initial set of stories from the customers (high
level analysis). Define a metaphor (high level
analysis/design).

For each release: perform the planning game to allocate
stories. For each story: define acceptance tests (analyze),
write unit tests (design), code, refactor, integrate, test and
repeat frequently (iterate) until done.

The basic process is incremental on the level of releases
and stories. Within those increments, the process iterates
rapidly, based on feedback from acceptance and unit
tests.

5 FROM SHACK TO SKYSCRAPER
So what is extreme in XP? It is the assumption that
analysis and design can be done incrementally; the
assumption that a complex system can be grown
incrementally with hardly any upfront work . XP
detractors liken it to “building a skyscraper out of a
shack”.

This assumption is in no way trivial or obvious. Where
this assumption does not hold, we will not be able to
apply XP successfully.

Which XP practices depend on the incremental
assumption?

• The planning game grows specifications story by
story, expecting each story to deliver business
value.

• Simple design solves today’s problems,
assuming that we will be able to solve
tomorrow’s problems when they arise.

• Small releases assumes we can deliver regular,
useful increments of the system to the
customers.

• Customer in team assumes we can define the
specification of the system gradually, when we
need to.

Working incrementally delivers some benefits:

• We learn all the time from the customer, from
the system being developed. If we can make
decisions later, they will likely be better.

• We keep the system as simple as possible,
making it easier to understand, easier to change,
less likely to contain errors.

• The customer quickly gets useful output. The
system can be used to generate value and to
guide further specification, planning and
development.

6 PRECONDITIONS FOR INCREMENTAL
METHODS TO WORK

Under what conditions do incremental methods work?

52

Let’s examine how the cost of implementing (which
includes analysis, design, coding, integration and testing)
one feature changes over the duration of a whole software
system.

One feature becomes quickly more expensive to
implement, the other feature’s price rises slowly.

In the first case we would be wise to spend effort as soon
as possible, while the cost is low. We want to analyze and
design this feature as completely as we can; we want to
address not only our current needs but also our future
needs. If we don’t do it today, we will pay dearly for it
later. A common cause for rising implementation costs is
the breakdown of the design under the stress of new
functions when the design is not kept up to date by
refactoring.

In the second case, we can safely delay addressing the
feature until we really need to. It might be somewhat
more costly to design and implement later. For example,
the system will have more functions and thus will
probably be more complex. But we can invest the effort
we have not spent on other, more profitable features.

It’s in this situation the planning game brings large
benefit to customers: they can select stories to implement
based on their business value, without having to be
concerned about technical dependencies and future costs.

7 SURPRISING COST CURVE
One of the surprising and pleasant effects that the
incremental method can have is that the price of some
functionalities decreases over time! The following can
cause this:

• Well-designed (refactored), simple code where
no duplication is allowed often presents the
developer with opportunities to reuse significant
parts of the code, which makes new features
easier to implement.

• Over time we learn to better understand the
problem domain, the design and the software.
We see new abstractions, simpler ways to solve
problems and better ways to apply our designs.

So, we find another heuristic to select the incremental

method: use the incremental method when you expect to
learn more, so that you can make better decisions later.
This applies especially to situations where requirements
are unclear or changing.

8 ANALOGY WITH INVESTMENT
If you want to invest in a company you can buy shares.
You make the decision based on your knowledge of the
market, the company, the risk you run and speculation
about the future. Your money is tied up. If it turns out like
you predicted you can gain a lot. If it doesn’t, you lose
money. That’s the risk you take.

Sometimes you can buy stock options. These allow you to
buy stock in the future at a price that is agreed now. You
invest very little but you buy the possibility to wait to
make your decision. If the value of the stocks rises, you
buy and make a profit. If the value of the stocks
decreases, you don’t buy and lose only the price of the
option. Likewise, investing in tests and refactoring is a
small investment that pays off by giving you more
options.

9 ANALOGY WITH HOUSE BUILDING
Often, software development is compared with more
mature engineering disciplines. An analogy with building
construction is sometimes used to demonstrate the value
of good architectural design, detailed planning (as if
construction projects always deliver on spec, on time) and
a solid mathematical and scientific basis. Let’s see how
one would approach a house-building project under both
cost-of-implementation assumptions. Imagine, an
architect discusses the specifications for a house to be
built for a couple. An important factor is the number of
bedrooms to be built.

The couple must decide now how many bedrooms it will
need in the foreseeable future. How many children will
they have? Hard to predict. But they must decide now,
because it will be very costly to add additional rooms to
the house. They must invest now, their money is tied up
in those rooms they may never need. If they
underestimate the number of rooms needed they will be
faced with costly modifications or will have to build a
new house.

If, on the other hand, adding a room later costs not much
more than building it now, the couple would be wise to
postpone the decision until they really need extra rooms.
In the mean time they can invest their money elsewhere.
They don’t face the risk of over- or underestimating the
need for rooms and thus wasting money. They have
lowered their financial risk considerably.

Maybe software and houses aren’t the same [4].

10 TYPICAL EXAMPLES OF RAPIDLY RISING
COST FEATURES

In some situations we are faced with features whose cost
rises sharply. We should take this into account and expect
to perform more work upfront. We should also try to
minimize the cost, so that we can gain the benefits of the

Cost of implementation

Feature 1

Feature 2

53

incremental method.

• Externally used published APIs: once the APIs
are in use, customers will demand backwards
compatibility or a simple upgrade path. Effort
should be spent on keeping the APIs flexible,
minimal and useful.

• Development teams that aren’t co-located. Up-
front effort should be spent on partitioning the
system to be developed.

• Databases used by multiple, independent
applications. Common abstractions should be
used to encapsulate persistence. When
applications are released independently, the
persistence and model layer should support some
level of multiple version support.

• Software where release to customers or
distribution is expensive. Frequent releases can
train the development and production team to
perform these tasks as efficiently as possible.

• Aspects of the application that have an overall
effect on all of its parts. Examples are:
internationalization, scalability, error handling…
Having to make changes that affect all of the
software makes refactoring very expensive.

Summary : interfaces between different teams, global
properties of the system and software that is distributed to
remote customers have a high cost of change.

Some areas that are commonly thought to have a high
cost may have a surprisingly low cost of change:

• Except for hard time-critical software, well-
factored code can be changed to meet
performance criteria. A few simple and general
design techniques can be used upfront. Most of
the performance-related work can only be done
after measurements have been made on the
integrated system. A process that integrates and
delivers often, combined with performance
measurements is the most effective way of
developing well-performing software.

• Database schema changes for software that is
owned by one team. A team can get very good
very quickly at dealing with schema or interface
changes, if all of the software is owned by the
team. Version-detection, upgrade programs and
encapsulation of version-dependent modules
allowed my team to make fundamental changes

to the database structure, without any customer
noticing it.

11 CONCLUSION
The choice between upfront work and refactoring is one
to be made on a case-by-case basis. There is always some
upfront work and some refactoring. It is up to the
software engineer to make the right tradeoff, based on the
following heuristics:

• If you can postpone decisions, you will be able
to make better decisions at a later time.

• Invest in more upfront work if the
implementation cost of the functionality is likely
to rise rapidly in the future.

• Investing is dangerous unless you know the
domain well and can make informed projections.

The choice comes down to selecting the method that
implies the least risk. Good, experienced software
engineers are able to make this choice. Instead of using
the disparaging term “Big Design Up Front” (BDUF) we
should be investigating how best to determine what is
“Just Enough Design for Increments” (JEDI). This will
allow us to make better-informed decisions.

Maybe software engineering should not look only to other
engineering disciplines for analogies and techniques, but
also to the way risk and return on investment are analyzed
in the financial world.

12 INFORMATION AND QUES TIONS
For more information, contact PVC@LESIRE.COM
ACKNOWLEDGEMENTS
Thanks to Vera Peeters and Martine Verluyten for
reviewing and discussing this paper.

REFERENCES
1. Beck, K. “Extreme Programming Explained” ,

p.21-23

2. Boehm, B, “Software Engineering Economics”

3. Cockburn, A, “Reexamining the Cost of
Change Curve”, on-line:
http://www.xprogramming.com/xpmag/cost_of_
change.htm

4. Jeffries, R. “House Analogy”, online
http://www.xprogramming.com/xpmag/houseAn
alogy.htm

