
v4.2 Agile Fixed Price Projects part 1 p. 1

Agile Fixed Price Projects part 1:
“The Price Is Right”

Pascal Van Cauwenberghe
Nayima

pvc at nayima.be

Introduction
When I talk about Agile Software Development
methods [Highsmith 2002] and Extreme
Programming [Beck 1999], the remark I get
most often is: “That will never work!” The only
reply I can give is: “It works for me”. The
second-most often heard remark is “I can’t do
that, I have to do fixed-price contracts!” My
reply to that is a bit more involved. This two-
part article contains my reply, so that maybe
next time I will get some different remarks.
This article describes an approach to fixed-price
projects using a classical, “rigorous” process.
There are three phases in the process:
qualifying, selling and implementing the
project. This text provides some tips for each of
the phases:

• First of all, I have to decide if a project
can reasonably be done under a fixed-price
contract. This text contains some questions
I ask myself to (dis)qualify projects.

• If I decide to go for the project, I still need
to win the project. The sales process is
crucial to set up the right conditions for
implementing the project. The sales tips
allow me to remove some major
implementation risks before the project
starts.

• When I’ve won a contract with the right
conditions, I can implement and deliver the
project, using the implementation tips in
this text.

All of these techniques have been applied on
succesful fixed-price projects. How do I know
they were successful? Because, given the choice,
everyone involved would do the next project the
same way.

A fixed price contract
A fixed-price (FP) contract between a provider
and a customer defines the scope, features,
planning, timing and price of a software project.
Pretty much everything is fixed, not only the
price.
Why do customers so often demand “FP”
contracts?

• If projects are awarded after a multi-
provider bidding process, the customer
needs to know scope, timing and price to
choose between the bids.

• Customers think that they take no
functional risk: if the provider does not
deliver on time or on spec, the customer can

always sue! Of course, if the customer really
needs the software on the given date, they
too are in trouble.

• Customers think they take no financial
risk as the price is known beforehand.
However, surprisingly many “fixed price”
projects cost more than initially agreed
upon. We’ll see later how this can happen.

• The defined, planned and sequential
project flow gives the customers a warm,
safe feeling of control. Until near the end of
the project, when these projects so often
“suddenly” start to fail.

This type of contract is almost universally hated
and feared by software providers because of
their high financial and functional risk and their
low success rates. The contract seems to protect
the customer at the expense of the provider.

Do you have what it takes?
What does it take to be successful project
manager of such a project? I and my team will
enter into an FP contract if

We can fully specify, estimate and plan the
project.

We can deliver the product exactly as agreed,
within some small tolerance.

Do you fail one or both of these criteria? Why
would you enter into an FP contract? You will
very likely lose money and your customer.
You are not alone: according to the “Standish
Group Chaos report” [Johnson 2001], 72% of
projects fail to deliver what was originally
specified, in the agreed time and on budget.
Read this text to get some tips to learn how to
evaluate and satisfy the criteria. And don’t do FP
contracts until you get the risk under control!

v4.2 Agile Fixed Price Projects part 1 p. 2

The following questions refine the conditions,
which are necessary for me to make these
statements.

Question 1: Do I know the domain?
I can’t specify, estimate and produce a software
product well enough if it’s in some domain I’ve
never worked in before. That would be too much
to ask.
I need to know the domain well to be able to
specify the project: I need to understand the
language and problems of the customer; I need
to know where to get more information; I must
be able to devise solutions and explain them to
the customer. I must be able to help the customer
to draw up a complete specification by asking
questions like: “Do you need feature X? The
customers in the four previous projects in your
domain all required X”.
I need to have experience in the domain to
estimate correctly enough: I use actual effort
measurements of earlier similar projects; I must
be able to distinguish between what’s
comparable and different between this and
previous projects; I must have experience with
the common risks of the domain.
I need to know the domain to execute the project
well: most of the project should be the
application of known techniques, with as few as
possible original problems and solutions; I
expect to be able to foresee and handle most of
the risks in the project.

Question 2: Do I know the
technology?
I need to be familiar with the execution
environment (computer and operating systems),
the programming language, the tools and the
development process. I don’t experiment or use
“bleeding edge” technology on FP projects, only
boring bread-and-butter methods and tools that I
know and master perfectly.

Question 3: Can I work with my usual
team?
The most important variable is the development
team. What’s the use in knowing that last time
we implemented some feature in 20 days with
team X, if team Y implements this project? How
quickly and how well will team Y implement
this same feature? I have no idea, unless I’ve
worked with them on similar projects.
Team performance depends for a part on the
talent and experience of its members.
Performance depends a lot more on how well
these people work together. If a team works well
together, has a “rhythm” and knows its “pace”,
you can predict with some accuracy how they
will perform. If the “team” is a bunch of people

freshly assembled for the project, expect to lose
time building a team and forget about estimating
their performance accurately.

Add newcomers to a team one by one, to teams
of experienced people.

Don’t count on them to add much to the project,
at first.

Question 4: Can I handle the
estimated project size?
Am I comfortable with the length of the
project? If I’m used to doing projects shorter
than 6 months, I will be taking a huge risk when
I take on projects of 1 year or longer. If the
project is longer

• There are more requirements to analyze,
estimate and plan.

• Planning and estimation errors become
larger, as the estimations of the later parts
of the project are based on the correctness
of those of the earlier parts

• Changes in requirements become more
likely and more necessary as the
environment of the system changes.

Am I comfortable with the number of people
on the project? Managing a team of 50 is
fundamentally different from managing a team
of 5. If the team is larger

• Communication overhead becomes larger
(relative to the square of the number of
people)

• Misunderstandings and
miscommunication become more frequent

• More effort has to be spent dividing and
synchronizing the work

• It becomes harder to find shared vision
and values

• Change becomes harder as we have to
convince more people

Bigger projects require more time and/or more
people. Longer projects and larger teams are less
efficient than shorter projects and smaller teams,
because the effects of size are not linear.

Sales tip 1: Don’t just respond to
RFPs
Customers often look for a provider for a fixed-
price project by sending out a “Request For
Proposal” document. The RFP contains a
description of a problem to be solved. Providers
who wish to implement a solution, have to
respond with a written proposal containing a
specification, timing, planning and price. The
customer then chooses the provider with the best
proposal, according to their own criteria.
This customer has, most likely, been helped to
write this document by one of your competitors.

v4.2 Agile Fixed Price Projects part 1 p. 3

As a result, RFPs, which should be open-ended,
typically have a concrete solution in mind: your
competitor’s solution. And, in any case, these
RFPs are always incomplete.
Just responding with a proposal document is not
very likely to win you the deal. Even worse: you
might win the deal, but if you base your
specification, planning and estimate upon this
biased and incomplete RFP, your project will
most likely fail.
I go and talk to the customer, ask questions, get
some more information, get the answers that are
not in the document, establish a rapport, try to
steer them away from the solutions already
envisioned with my competitor during the
drafting of the RFP.
If they won’t talk to me, answer my questions or
clarify their wishes now, I don’t make a
proposal. I don’t have enough information to
work on. Even if I could win the project, how
likely is it that I will communicate better during
the project?

Sales tip 2: It works both ways
A fixed-price contract is a contract between two
parties for their mutual benefit. Both parties
have rights and responsibilities and these must
be divided fairly between the two parties. If
either of the parties does not feel treated fairly, I
don’t enter into the contract. The contract should
clearly state the responsibilities of both parties.
E.g. the customer should deliver some
information by a certain date, provide testing
feedback within a certain timeframe… The
provider should deliver some functionality by a
certain date, make the product comply with
certain quality criteria….
More important than the contract is the working
relationship of the customer and the provider:

• Is there a good level of communication?
• Do both parties trust each other?
• Are both parties willing to perform their

part of the job?
• Does everyone realize the commitment

they are making? Do both parties have the
necessary time, knowledge and authority to
do their job well?

• Is there a willingness to solve the
problems that will inevitably arise?

• Is everyone committed to making a
success of this project?

One of the most important tasks during the sales
process is to set up this working relationship. If
you fail to do that, you’ve just added a huge risk
to your project.

Sales tip 3: Don’t underbid
I can estimate a project perfectly (for some
definition of “perfect”): I know how long the

project will take, how much it will cost. Thus, I
can compute a price that allows me to recoup my
costs and make some decent profit.
If you’re in competition to get the project, it will
be tempting to lower your price, planning to go
over budget anyway. This extra billing might
compensate for the loss you make on the initial
bid.
I don’t enter into a contract that is unfair to me
and I don’t try to correct this unfairness by not
giving the customer what was agreed. That
would a great way to start a business
relationship…
Do I tell my team that their target is not feasible?
Do I tell them that I expect them to fail? That
would be a great way to motivate them…
And it doesn’t work anyway, because
“Implementation tip 1: Don’t allow change
requests” doesn’t allow me to increase the
budget. It’s a fixed price contract, remember?

Sales tip 4: Add some slack to cover
the risks
I have to admit it: I can’t specify, estimate,
plan and execute a project perfectly. It’s a
useful and reassuring simplification, but I’m
hardly perfect. For projects in a known domain
and environment, with a known team and of the
usual size I can get close. But I know I will
make mistakes before and during the project.
There are factors related to the customer that
can’t be controlled: how well will they respect
their commitments, how well have they specified
what they needed, how high are the odds that the
requirements will have to change…?
Then there are the “forces of nature” that I have
no control over: people will get sick, computers
will throw tantrums, and other jobs will need to
be done urgently….
All of these foreseen events and many more
unforeseen ones are the “risks” of the project. I
try to enumerate and quantify the risks, the odds
of their happening, and the cost of avoiding or
mitigating them. And then I add some more for
unforeseen risks. I add a few percent “slack” to
the estimates (and thus the planning, timing and
budget) to cope with all these risks.
How much slack do you need to add? I’ve added
between 10% (for predictable, short projects for
known, professional customers) and 30% of the
original estimates. If I feel I need more slack
than that, this project is probably too risky to do
under a standard fixed-price contract.
I don’t cut slack to underbid a competitor,
because I will need it during the project, if I’m
paid for it or not.

v4.2 Agile Fixed Price Projects part 1 p. 4

Sales tip 5: Real business
requirements
I write the specification together with the
customer. If they don’t have enough time to
discuss, review and improve the specification, I
don’t bid for the project: if the project is not
important enough to specify and plan well, it’s
not important enough to implement it.
Each item of the specification, each feature (or
use case or user story) must comply with the
following criteria:

• The description of the feature must be
fully understood by the customer and by the
development team. The description uses a
vocabulary that is familiar to the customer,
no technical mumbo-jumbo!

• The feature must add some business
value. The customers must understand why
this feature is included, what value it will
provide.

• The feature must be verifiable by the
customer. At some point I have to ask the
customer “Is this requirement met? Yes or
no?” If we’ve defined the acceptance
criteria beforehand, I can be confident that I
will get a “Yes”.

I leave the technical details out of the customer’s
specification; they’re only used within the
development team. The specification should be
as brief as possible, so that we don’t need to
spend an inordinate amount of work writing it.
The specification should describe the
requirements with “enough” precision: just
enough to be able to understand, estimate,
implement the requirement and to evaluate if the
implementation meets the requirement.

Implementation tip 1: Don’t allow
change requests
Change Requests are a well-known tool used by
most project managers. If a customer wants
something that’s not in the original specification,
their project manager can fill in a “Change
Request” form, which describes the change.
Based on this information, the provider’s project
manager can estimate the extra work and cost
required. If the customer agrees with the
estimate, the extra work is performed. The cost
of this work is added to the final bill, the extra
time is added to the planning.
Change requests have the following advantages:

• They allow the customer to steer the
scope of the project, use the knowledge
they have gained during the project and
correct any mistakes made during the initial
specification phase.

• The provider gets to bill more than
budgeted, which makes the provider’s CEO
and CFO happy.

But there are many drawbacks:
• The changes disrupt the orderly flow of

the project, making the development team
less efficient. Team members get
demoralized when feature lists and planning
are in a state of flux and completion dates
slip.

• It’s more difficult to schedule and
synchronize with other projects, as there’s
no way to predict when this job will be
finished.

• The disputes preceding the change request
(“It’s in the spec! No, it’s not! Yes, it is…”)
and the haggling over estimates and extra
cost poison the relation of the provider with
the customer. All of this nasty commercial
negotiation stuff should have been finished
before the project started.

• Change requests invariably lead to
dissatisfaction of the customer as the
budget and timing creep. How does a
project get to be late and over budget? One
change request at a time. Welcome to the
“challenged projects” category!

The problem with change requests is that their
negative effects only show up after a delay.
Responsibility for the project at the customer is
typically shared between a project manager
(with authority over functional matters) and the
finance manager (with authority over budgets).
The project manager agrees with every small
change request and is happy to see more
functionality added. The finance manager only
sees a large budget overrun at the end of the
billing period. The end users only see that the
product is not delivered on time. By the time the
negative effects appear, it’s too late to do
anything about it. And so, a lot of yelling and
recriminations ensue… Which makes everybody
unhappy.

Don’t use Change Requests because their
drawbacks heavily outweigh any initial

advantages they bring.

When I explain this rule, older, wiser, more
experienced and more cynical people invariably
point out to me: “You’ll never get rich this way!”
Change Requests seem to be a standard
technique to make customers pay more than
agreed.
I’m not rich, so I guess they are right. But is a
project manager who brings in twice the amount
budgeted, by delivering late, a success or a
failure? The use of “Exchange Requests”,
explained in the follow-up article, can deliver
the flexibility of change requests, without the
negative effects upon schedule and budget.

v4.2 Agile Fixed Price Projects part 1 p. 5

Implementation tip 2: Spend your
slack wisely
Thanks to “Sales tip 4: Add some slack to cover
the risk”, the project has been allotted more days
than strictly necessary. I use this extra time
sparingly. I try to resist the temptation to “slack
off” because there’s ample time left. When do I
spend slack?

• Something goes wrong: a team member
get sick, a tool doesn’t work as advertised,
the database crashes, the computers refuse
to work, some risk materializes…
Accidents happen, some of the slack must
be spent to handle the problem.

• An estimate is too low. If a job takes 2
days more than estimated, I take 2 days out
of the “slack piggy bank”.

• The specification was wrong or can be
improved. I spend a small amount of slack
to do the extra work required, so that we
can avoid “change requests” or other
actions that increase timing and budget. The
customer appreciates it if I spend my
precious time on improving his system.

• Something unforeseen happens. I can try
to foresee and avoid all possible risks and
still some unforeseen ones crop up. I’m
constantly on the lookout for these events
and use some of my slack time to nip them
in the bud.

Sometimes things turn out better than expected,
jobs get finished faster than estimated. Put the
time you gained back into your “slack piggy
bank”.

Imagine a 19th century engineer keeping a steam
engine running. The project is like a beautiful
machine, lovingly built, gleaming clean and in
perfect working order; slack is like a small can
of lubricating oil. A few drops of oil here and
there do wonders to keep the machine running
smoothly. At his best, the engineer is completely
attuned to the machine and seems almost
prescient, lubricating the parts before they start
creaking. On the other hand, no amount of
lubrication is going to keep a badly maintained,
sloppily built and over-stressed machine doing
useful work.

Implementation tip 3: Simple, honest
and correct tracking
During the course of the project, I need to track
my team’s progress. Are we behind or ahead of
schedule? Will we be able to deliver as
promised? Do we need to take some corrective
action? It all sounds very complicated and time-
consuming. There are all of these wonderful,
expensive and complicated tools I can use. Do I
really spend a lot of time tracking? Of course

not. The team and the customer only need to
know two things:

• Will we be able to deliver as promised?
• If not, what can we do to get back on

track?

A simple and effective method is to have a
“burndown chart” or “backlog chart” [Schwaber
2002]. This essentially plots the amount of
effort left versus time. Each time a feature is
finished, we reduce the “amount of effort left”
by the effort estimated for that feature. Any child
can see how we’re doing. This chart is easily
updated and should be visible to all project
participants, as an “information radiator”
[Cockburn 2002]. If anyone wants to know “Are
we there yet?” they just have to look at the chart.
It’s important to only count fully completed,
tested and “ready for acceptance” features. This
keeps me from deluding myself with statements
like “the feature is 80% finished”. A feature is
either done (and acceptable for the customer) or
not done. This guarantees that the tracking
represents real progress.
The plan is just a plan; the only important thing
is the delivery of the project. I don’t care about
deviations, as long as the goal of delivering is
not jeopardized. For example: if I have two
features, each estimated at 5 days, I don’t worry
if one takes 4 days and the other takes 6 days.
Sure, I didn’t follow the plan, but I’m still on
target to deliver as planned. The plan gets
modified to reflect reality, but always with the
same goal: to deliver the project as promised.
We can also record how long each feature took
to implement. This allows us to calibrate the
team’s speed and to improve the estimates for
the following project.

Implementation tip 4: Manage your
project
If the requirements have been established, the
effort has been estimated and the project has
been planned the hardest part is over, right? The
rest is just implementation: following the plan.
No. A project manager’s job is to manage the
project. What does that entail?

v4.2 Agile Fixed Price Projects part 1 p. 6

• I’m aware of a lot of risks that the team
runs. I’ve prepared ways to avoid the risks,
devised contingency plans and stored some
amount of “slack” to deal with them.

• I’m constantly on the lookout for new,
unforeseen problems. Whenever one rears
it’s ugly little head, we nip it in the bud.

• If the tracking shows we are getting into
trouble, the team and the customer know it
and we find and solve the problem.

The job is not about specifying, estimating and
planning perfectly.

The job is to deliver what the customer needs.

If we extend the rugby metaphor of the
“SCRUM” method [Schwaber 2002], the team’s
goal is to score the touchdown. We’re always on
the lookout for adversaries threatening our
progress. Everything that gets in the way of the
team gets tackled. We don’t care who scores the
touchdown, as long as the team scores. The
project manager (or “scrum master”) is
responsible to get all obstacles out of the way.

Attack your risks or they will attack you

Some people think the project manager should
shield the team from every outside influence that
might impede their progress. For example:
“developers should not talk to the customer, lest
they get confused”. On the contrary, involve the
team in discussions with the customer about
functionality and let them avoid and mitigate
risks and solve problems. The job of the project
manager is not to solve all problems and shield
the team, but to ensure that the problems get
solved.

Don’t shield the team.

Help them to avoid and solve problems.

With all of these tasks, the job of a project
manager looks quite hectic. It isn’t, unless it’s
done badly. A good project manager is proactive
and solves most problems before they become
apparent; which still leaves enough problems to
fill a full working day. If problems grow and
fester, the job becomes a lot harder.

Good project managers don’t seem to do a lot
and lead pretty uneventful lives.

What kind of project is this?
If we review all the tips what are the recurring
themes? I’ve done this type of project, in this
type of environment, with my team a thousand
times before. I can look back on several similar
projects for experience, domain knowledge and
actual performance measurements. I do my best
to minimize the risks and to keep as many

parameters as possible constant from one project
to the other.
It all sounds very boring: “been there, done
that!” It’s not boring at all, because each
customer, each problem and each project is in
some way unique and will bring some
unexpected events to tax my project
management skills.
This type of project is what Jim Highsmith calls
an “Optimization” project [Highsmith 2002]:
performing a well-known activity as efficiently
as possible by reducing the risks. This type of
project works best with a “Rigorous Software
Methodology”: a method whose main method of
dealing with risk is to reduce or eliminate it.
From the description, this looks like a relatively
narrow category of projects. The further we
deviate from the low risk ideal, the more
dangerous a fixed-price contract becomes for the
provider and the customer. The next article will
describe some techniques that are more suited to
“Exploratory” projects, where risks are higher.
I use these techniques to extend the range of
projects that can be handled with fixed-price
contracts.

Conclusion
Fixed-price contracts fix scope, timing, planning
and price of a software project. They represent a
high risk for the software provider and for the
customer, even though they seem to shield the
customer from all risks.
These contracts can only safely be entered into
for low-risk “Optimization”-type projects.
We’ve seen a few selection criteria that allow
me to (dis)qualify a project for implementation
under a fixed-price contract. If the project
qualifies, we can apply the sales and
implementation tips, which allow us to reduce
certain project risks.
If the project does not fit the Optimization
model, it should not be executed under a fixed-
price contract with the process described in this
text. The next article describes some techniques
to handle projects with higher risks under a
fixed-price contract.

References
[Beck 1999] “Extreme Programming
Explained”, Kent Beck – Addison Wesley 1999
[Cockburn 2002] “Agile Software
Development”, Alistair Cockburn – Addison
Wesley
[Highsmith 2002] “Agile Software Development
Ecosystems”, Jim Highsmith – Addison Wesley
2002
[Johnson 2002] “Collaborating on Project
Success”, Jim Johnson, Karen D. Boucher, Kyle
Connors, and James Robinson – Software
Magazine February/March 2001. Online at

v4.2 Agile Fixed Price Projects part 1 p. 7

http://www.softwaremag.com/archive/2001feb/C
ollaborativeMgt.html
[Schwaber 2002] “Agile Software Development
with SCRUM”, Ken Schwaber and Mike Beedle
- Prentice Hall 2002

