
v3.2 Agile Fixed Price Projects part 2 p. 1

Agile Fixed Price Projects part 2:
“Do you want agility with that?”

Pascal Van Cauwenberghe
Nayima

pvc at nayima.be

Introduction
Most proponents of “agile software
development methods” [Highsmith 2002] [Beck
1999] will tell you not to do fixed-price
projects, as they are bad for providers AND
customers. There is some truth there, but it’s
still a cop-out. What if you do fixed-price
projects? Can’t agile methods help you? Sure
they can.
I will describe some “agile” tools that I’ve used
to improve my fixed-price project method. They
have allowed me to get better results and
increase the range of projects that I’m prepared
to handle under a fixed-price contract.

Question 1: Are we all committed?
I can add some measure of agility to fixed-price
contracts, but this requires an even greater
effort and involvement from the customer than
usual. I can only do that if the customer is able
and willing to put in this effort.
A good indicator of a committed customer is a
hard release date; e.g. “The project must be
done on <this date>, because that’s the starting
date of the marketing campaign” or “The
project must be done of <that date> because
that’s the date in the fixed-price contract
between the customer and its customer”. A
project without a firm end-date is a warning
sign, as the customer is under less pressure to
do their part of the work.

Question 2: Will I get timely
feedback ?
I will need timely feedback from the customer.
For example: they will have to perform regular
acceptance tests and report any issues within a
few days. This enables my team to fix bugs
rapidly and keep bug counts low.
All of these commitments are put into the
contract:

• How often the customer must be
available to answer questions.

• When the customer will receive new
releases.

• The response time for acceptance test
feedback and decisions to be made.

• The dates certain information must be
provided by the customer.

The aim is not to over-regulate communication
between the customer and the development
team, but to agree on maximum communication

latencies. If the feedback and communication
latencies become too large, we can’t steer the
project.

Sales tip 1: Many small projects are
better than one big project
It’s a well-known fact that project success rates
are higher for small projects than for big ones
[Johnson 2002]. Small projects are easier to
oversee, require fewer people, handle fewer
requirements, estimation errors are smaller, and
they lead to tangible results faster… I prefer
smaller projects, lasting a few months, requiring
a handful of people. But what if my customer
has a really big need? Do I need to take on that
extra risk that a big project brings? Maybe
not…
I always try to reduce the size of a project to a
level that I’m comfortable with. Does the
customer really require all that stuff? First of
all, we have to prioritize the requirements: what
is crucial, what is important, what is nice to
have? If we just do the crucial stuff, could the
customer use the product? If not, what do we
need to add? What would be enough for a first,
useful release?
Customers are often surprised when I do this,
but there are many advantages for them:

• Project cost is reduced if we can drop or
postpone some features

• The users get the software earlier than
expected, as the timing is reduced

• Project risk is reduced as we work on
fewer requirements and concentrate on the
high value features

• The customer can evaluate the outcome
of the project sooner

• They can delay their decision about the
requirements that are not in the first
release. At that time they will have more
information and knowledge to make a
better decision. This allows the customer
to “Decide Later” [Poppendieck 2003].

I get some advantages too:
• My risk is reduced, as I have to estimate

and handle fewer requirements, get
feedback sooner and have a smaller team.

• I can prove myself and gain the trust of
the customer by delivering something
worthwhile. Most of the tips in this text
rely on a constructive, open and trusting
working relationship with my customer. A

v3.2 Agile Fixed Price Projects part 2 p. 2

first small, successful project is the perfect
way of earning that trust and building that
relationship.

• If it doesn’t work out, both parties’ loss
is small.

I don’t want to do projects that are too small,
either. Projects of only a few days are very hard
to get right, as there’s no room for
compensating for missed estimates or problems.
There is one disadvantage for me: I’ve just
arranged to earn less or have my income
delayed. This is the subject of the section
“Warning: The money trap”.

Implementation tip 1: Let the
customer sort the requirements
I’ve got this long list of requirements in the
specification. As described in “Sales tip 1:
Many small projects are better than one big
project” they have been categorized as crucial,
important and nice to have. I’ll tackle them in
that order. But in what order do I implement the
requirements in each category? I let the
customer decide.
When the customer and I lay out the project
plan, the customer gets to choose the order. It’s
a simple process: first you do the crucial
features. Just ask the customer “which one is
the crucialest of them all?” This one goes first.
Then the next most crucial requirement, and so
on. Then the important stories. How does the
customer choose? By comparing the value each
requirement will bring. It’s usually possible to
compare two requirements and decide which
one is more important.
Can I always implement stuff in the order that
the customer chooses? Aren’t there any
dependencies, requirements that have to be
handled first to reduce risk or dependencies
between requirements? Yes, but not many, if
you really try to keep each feature independent
from the others. In those few cases where there
are dependencies or risks, we can increase the
feature’s priority and adjust the planning
accordingly.
There are several advantages to this technique:

• We reduce the risk because the least
important requirements are tackled near
the end of the project, where there’s most
schedule pressure.

• The customer can give feedback on the
most important features first, when there’s
most leverage.

• The customer sees value being added to
the system from the early stages of the
project. They might even be tempted to use
the system before it’s finished (see
“Implementation tip 7: Frequent releases,

incremental delivery”), thereby learning to
handle incremental delivery.

This technique is also used in the Extreme
Programming “Planning Game” [Beck 1999]
and SCRUM’s “Product backlog” [Schwaber
2002].

Implementation tip 2: Requirements
as stories. Don’t sweat the details
I don’t specify each requirement in great
detail. Just enough detail and no more. Don’t I
need all these details to estimate and plan
correctly? Not always. For example, this is
from the planning of a fixed-price project: “The
user can view 5 types of reports about orders.
These are shown in a separate browser window.
Cost 10 days. The customer shall specify the
parameters, layout and data to be shown before
<the latest date implementation of this feature
must start>”.
How do I know 5 types of reports is enough?
That’s what’s usually required for customers
and projects in this domain. How do I know it
will cost 10 days, if I don’t even know the
parameters, layout, data or queries? I know the
kinds of reports that are useful in this domain
and I’ve implemented them several times
before. From previous projects I know that it
typically takes somewhat less than 10 days to
complete these reports. Let’s estimate 10 days
to have some slack.
What do we gain by this technique?

• The specification becomes smaller, easier
to write, easier to understand and verify by
the customer.

• As there is less work to do on the
specification, we can get on to the
implementation part earlier and thus
deliver value earlier.

• The customer can delay decisions. At
that time they will know more and be able
to specify more precisely what they need.

This technique only works under the following
conditions:

• I have a pretty good idea of what’s
required without the details

• I have a constructive, trusting working
relationship with the customer. I must trust
that they will complete the requirements in
time and not ask unreasonable requests. I
must trust that there will be no problems
when it comes to accepting the
implementation based on this incomplete
specification. The customer must trust me
to implement this requirement following
the spirit of the contract, not its letter.

• I have some slack to handle unforeseen
problems. For example: they really require

v3.2 Agile Fixed Price Projects part 2 p. 3

6 reports, the queries are unusually
complex…

This is the same technique as “User Stories” in
Extreme Programming, where requirements are
detailed when and if needed.

Implementation tip 3: Exchange
Requests
It’s clearly not possible to always define the
perfect specification before the start of the
project: we make mistakes, we forget things,
and we learn new knowledge, the environment
of the system changes… One way to cope with
this is by using “Change Requests”, a technique
to make changes to the specification. Because
each change request increases the time and cost
of the project, they are best avoided if you want
a successful project and a happy customer.
“Exchange Requests” work like this: each time
the customer and I need to change the
specification, we make a Change Request and
estimate its effort (and thus cost). When the
customer approves the change request and its
estimate, they can add the new features to the
project if they first remove functionality
requiring at least the same effort. We can
only remove unimplemented features that the
development team is not working on. For
example, the customer can add feature X (cost 5
man days) if they first remove features A (cost
3 man days) and B (cost 2 man days).
What are the advantages of this technique?

• We keep the budget and timing constant
(by definition). The development team and
the customer have the satisfaction of
finishing a job on time, on budget.

• We are able to change the specification
flexibly to deliver what the customer
needs, not necessarily what they asked for.
We do not deliver what was specified, but
we do (at least) as much work as agreed. If
we’ve revised the specification, the new
features were more valuable than the old
ones, or the customer wouldn’t have
swapped them in. This means we deliver
something that’s at least as valuable than
what was agreed.

• We put more thought into changes to the
specification: the customer has to think
very carefully if the new feature is really
worth more than the feature being taken
out. Therefore, we expect fewer, but more
useful, changes to the project.

• We shorten the feedback loop between
functional changes and their effects upon
budget and timing, so that they are
immediately visible. The customer project
manager becomes more responsible for
budget and timing.

Implementation tip 4: Put dropped
requirements into a follow-up project
There seem to be no disadvantages to the
Exchange Requests technique, or are there?
What about those requirements that were
dropped? What if they were crucial to the
project? What if they were useful?
Well, if they’re really crucial or useful, the
customer will just have to define a follow-up
project to implement these features. This is a
new project, with a new specification, a new
planning (we can reuse the estimates of the
features that were dropped) and a new contract.
I can implement it as soon as this project is
done.
What’s the difference with the project that
results from change requests? The customer
gets the same features; the provider bills the
same amount. These are the differences:

• With change requests we have one
project that is late and over budget. With
exchange requests we have two projects
that are on budget and on schedule. I know
which one I would rather be the project
manager of.

• Unless really crucial requirements have
been dropped, the customer can use the
software on the date planned.

• Usually, the customer will learn that
some of the original requirements were not
really crucial and can be dropped
altogether after the exchange. Thus, the
project is often shorter and less costly with
exchange requests than with change
requests.

Implementation tip 5: Let the
customer use the software before the
follow-up project
If there are no crucial requirements to
implement, just some useful or “nice to have”
requirements, I advise the customer to use the
software before defining a follow-up project.
They will get lots of useful feedback, which
will allow them to define a far better follow-up
project. They will add and drop requirements,
based on actual use. They will have learned
what works and what doesn’t.
Sounds perfect, doesn’t it? Except for one
thing: we’ve fallen into the “money trap”.

Warning: The money trap
What is the “Money Trap”? Simply put:
“Money received now is worth more than
money received later.” The 100 Euro in my
pocket is worth more than the 100 Euro I’ll
receive in a year. Why? I can invest the 100
Euro in my pocket to bring me some return, say

v3.2 Agile Fixed Price Projects part 2 p. 4

6% in a year. Within a year, when I get that 100
Euro, the money I receive now will be worth
106 Euro.
Two of the tips, “Sales tip 1: Many small
projects are better than one big project” and
“Implementation tip 5: Let the customer use the
software before the follow-up project”, will
delay part of the execution of the project, and
therefore its payment. For example, if the
customer delays a follow-up project by six
months to use the software, I will be worse off,
because my income has been delayed for six
months. Even worse, the customer might realize
that the follow-up project is not really needed!
Forget that income.
For the customer it’s all benefit: they get to
change the specification; they get to drop
requirements that are discovered to be
unimportant; they can postpone decisions until
they have more knowledge and experience; they
never pay more than necessary; projects are
never late…
All of this makes a happy customer. Happy
customers have a habit of awarding projects to
providers who make them happy. Forget the
small loss you make now, invest in a long-term
relationship with your customer.
In my experience, the customer often gets lots
of useful ideas for improvement and extension
by using the software. Thus, the follow-up
project is sometimes larger than it would have
been if they hadn’t used the software first. So,
in the long run I earn more…

Investing in quality and your relationship
with the customer pays off, if you can afford

the initial investment.

Implementation tip 6: I’m the onsite
customer
The top three remarks I get about XP are: “It
will never work”, “It doesn’t work with fixed-
price contracts” and “You will never find an
onsite customer”. What is an “onsite
customer”? They are the interface between the
development team and the organisation whose
requirements the team is implementing.
Someone the developers can ask questions, who
can prioritize requirements and make decisions
in name of the customer organisation. And
they’re supposed to be available at all times,
hence the “onsite”. For the development team,
this is an ideal situation: they only have to deal
with one person; they can clarify any
requirement when needed and ask for business
decisions to be made.
Where can you find someone who has the
necessary knowledge and authority? Who can
spend all their time with the development team?

I lack the authority and some knowledge, but I
have to spend time with the team anyway, so in
most cases I will have to do. I know the
domain, I have the experience and I’ve gained a
lot of information about the customer during the
sales and specification process. I expect to be
able to answer most of the developers’
questions. I’ve already prioritized the
requirements with the customer, so that should
not be a problem. I expect to be able to take
many decisions, as I’ve agreed most of these
issues with the customer beforehand. And if I’m
unable to answer the question or take a
decision, I can always ask the real customer.
Thus, we get a situation where both the
developers and the customer can work
effectively:

• The specification doesn’t have to be very
detailed (see “Implementation tip 2:
Requirements as stories. Don’t sweat the
details”) and thus easier to create and to
understand.

• Most of the team’s questions get
answered quickly. Most of the decisions
get taken quickly. Some are deferred.

• The customer doesn’t have to be
available all the time. They do have to be
available regularly to answer my questions
or take some decisions.

I can only do this if I have the necessary
knowledge and experience of the domain and of
this particular customer. The most important
thing is to know when I don’t know the
answer or can’t take a decision. Better to take
some time deferring to the customer than losing
the team’s time by sending them on the wrong
path.

Implementation tip 7: Frequent
releases, incremental delivery
I like to release the software often. Typically
the software will be released once per week to
the customer project manager, as agreed during
the sales process. The team gives a
demonstration of the new features; the customer
uses these releases to do acceptance testing; the
customer gives feedback within a defined delay;
the team acts upon this feedback before
implementing other features. What are the
advantages of releasing so often?

• The development team gets the hang of
releasing the software, with all the messy
stuff related to installation, database
upgrades, backward compatibility

• The development focuses on delivering
high quality complete features. Each time
the customer accepts a feature the team
gets a little buzz of satisfaction.

v3.2 Agile Fixed Price Projects part 2 p. 5

• The customer can test and accept features
incrementally. Each week, some new
features are available for testing. All the
testing work (and its valuable feedback) is
not delayed until the end of the project.

• The customer can give useful feedback
from the beginning of the project. They
learn a lot from seeing and using the actual
product. This knowledge can be used to
improve the rest of the project.

• The customer has a real sense of
progress.

• The finished features you put into your
“burndown chart” are accepted by the
customer. They therefore better reflect the
amount of work done.

I divide the whole project in 1-month
increments. I try to define each of these
increments so that it delivers some coherent
functionality, organised around some “theme”.
The project is not complete until all the
increments have been delivered (“waterfall”
style), but this technique helps the customer to
learn to handle incremental development. After
a while, as the features and the increments roll
in regularly, the customer gets more confidence
in the provider and the process.
During their testing they will often discover that
these increments are good enough and complete
enough to be used by end-users. Thus, they
might suggest using the increments. This
enables them to get the value of their system
earlier than expected. On the next project, they
will demand incremental delivery.

Implementation tip 8: Looking back
to learn
After each project, we need to take some time
to look back, to learn lessons and to prepare for
the following project. Project Retrospectives
[Kerth 2001] provide a useful format to learn
from our experiences.
This is also the time to compare the estimates to
the actual time, so that we can improve the
accuracy of our estimates.
If we’ve encountered some new risks and
handled them, we should preserve this useful
knowledge.

What’s the cost of this extra agility?
Under a fixed-price contract, the customer has
the security that price, timing and scope are
fixed. With the agile techniques described in
this article they gain even more advantages:
they get value sooner from their system, they
can delay some decisions, they see progress (or
lack thereof) sooner and clearer and they can
flexibly adapt the requirements. What more
could they ask for?

Of course, there’s this one universal rule “There
is no such thing as a free lunch”. What’s the
price and who pays it?

• The customer must spend more effort
and time on the project: they must test the
features regularly and give timely
feedback; they must be available to answer
the questions of the team and take
decisions in the shortest delay possible;
they must actively participate in the
follow-up and management of the project.

• The project manager is even more
involved than usual: being an onsite
customer is hard work; the frequent
releases must be carefully reviewed and
followed up with the customer; the
planning must be updated when exchange
requests are included.

• The most important requirement is that
there is a constructive, honest and trusting
working relationship between customer
and provider. It takes a lot of time and
effort to build up this relationship: trust
must be earned. The best way the provider
can earn this trust is to be honest and
deliver upon their promises.

Strangely enough, few customers are prepared
to put this amount of work into their important
projects. They think they can let the provider do
most of the work. It should be clear that a
software project can only succeed if both parties
do their part of the job. If the customer is not
willing to spend the effort, I’m not willing to
risk failure by accepting the project.
Many of the techniques are about handling risk,
instead of avoiding it. This requires a leap of
faith from the customer who is used to the
classical project management techniques.
Customer and provider must trust each other
and work together to be able to handle and
respond to risk. The best way to earn this trust
and cooperation is to deliver successfully and
increase the customer’s involvement gradually.

Thinking about project management
Many of the situations that I’ve described have
the form “If you do X it will bring benefit in the
short term but has disadvantages in the longer
term” (for example the use of “Change
Requests”) or “If you do Y you will see negative
effects in the short term and positive effects in
the longer term” (for example “Implementation
tip 5: Let the customer use the software before
the follow-up project”). These forms will sound
very familiar to those who practice “Systems
Thinking” [Weinberg 1997] [Senge 1990].
Experience and examining these situations as
systems has taught me that it’s important to act
upon the causes of problems in such a way that
the long-term effects are positive. I’m not just

v3.2 Agile Fixed Price Projects part 2 p. 6

doing this project, but will be doing many more.
For example: I can drive my team really hard
and exhaust them to deliver on the current
project. But then they’ll be in no shape to
deliver the next one. By winning some time on
this project, I lose more time on the following
project.
The tricky problem is that it’s hard to “do the
right thing” when I’m under pressure to deliver.
I’m always tempted to take the shortcut, to do
what brings me the short-term gain, to fix the
symptom without fixing the cause. The way I
counteract this, is to impose “rules” upon
myself.

Them’s the rules
I have described some of the rules I use on
fixed-price projects. These force me to work so
that I attack causes and not symptoms of
problems; they force me to work towards the
long-term good of my team, my customer and
myself. When under stress, I follow the rules,
which avoids the temptation to sub-optimize for
the short term.
All of these rules are guided by some “meta-
rules”.

Always keep the goal in mind: delivering value
for the customer

Everything we do, every decision we take must
have this one goal in mind. We do whatever we
need to do, within the constraints of the other
rules, to reach our goal. The task of the project
manager is to ensure that the team never loses
sight of its goal.

Choose the rules that fit the game

We have seen rules for fixed-price projects;
some only apply on agile projects. Applying
rules (for example those from “Extreme
Programming”) where they don’t fit doesn’t
help me, it will harm me. I choose and tailor the
rules to the domain, the customer, the team, the
technology, and the environment…

The rules are the rules. You don’t play the
game, unless you accept the rules.

I’m strict about these rules: if you want to play
in or with my team, you have to follow the
rules. If the customer can’t or doesn’t want to
follow the rules, we don’t do the project. If a
team member doesn’t follow the rules, they’re
off the team.

Rules can be broken if that’s the only way to
solve a problem.

Sometimes I have to be a bit flexible and bend
the rules. I only do this if this is the only way
we have to solve a problem and if, after

examining the situation, we agree that this will
help us to reach our goal. For example: one of
my rules is “No overtime”, because I know the
negative effects it has on productivity. I’m quite
willing to break this rule and work two hours
longer to finish something or to meet some
deadline. If that’s not enough we have to look at
another way to solve our schedule problem:
more overtime will not fix the cause of the
schedule slip but it will lower team
productivity.

Every rule can be changed, but not during a
project.

No rule is perfect. Some rules become obsolete,
others must be updated, and new rules are
learned. The rules should capture the
knowledge you gain. But I can’t run a project if
the rules change out from under me or if there’s
constant discussion about the rules. Regularly
scheduled reviews (like the project
retrospectives described in “Implementation tip
8: Looking back to learn”) are the ideal moment
to evaluate and update the rules.

Be honest with the customer, with the team,
with myself.

Honesty is the best and easiest strategy in the
long run. If I have a problem, I shouldn’t hide
it, but solve it. I can only solve the problem if I
know and admit I have one. Hiding problems
from the customer or the team doesn’t work:
they find out eventually, most likely when the
product must be released. Why not ask for their
help in solving the problem?

Why would I want to do fixed-price
projects?
We’ve seen all the advantages fixed-price
projects can bring to my customers, at least if
they and my team implement the project
correctly. What’s in it for me, except all this
hard and risky work?

• Because of the fixed schedule I can more
easily plan different projects: if I know
project A will run from January 15th to
August 20th, I know that I can commit my
team to implement project B from August
25th on (taking some time off between
projects for the end of project party and the
retrospective).

• Because of the fixed schedule, my costs
are predictable.

• Because of the fixed budgets my income
is predictable.

• Some customers are more likely to do the
hard work of thinking about their real
requirements and taking the tough

v3.2 Agile Fixed Price Projects part 2 p. 7

decisions if there are clear threats to the
budget or schedule if they don’t.

Conclusion
We can apply “agile” techniques to handle risk
instead of avoiding all risks. These techniques
can be used to add some flexibility to a fixed-
price contract, without losing its advantages.
These techniques can only be applied if there is
sufficient trust and commitment from the
customer. The provider has to earn that trust
and commitment, by delivering upon promises
and gradually increasing the involvement of the
customer.
Building on that trust, we can go from projects
where budget, time and value are fixed to
projects where budget, time and minimum
value are fixed.
Customers who have experienced these gains
by working agilely don’t want to work any
other way again. They don’t want to work with
anyone else again.

References
[Beck 1999] “Extreme Programming
Explained”, Kent Beck – Addison Wesley 1999

[Highsmith 2002] “Agile Software
Development Ecosystems”, Jim Highsmith –
Addison Wesley 2002
[Johnson 2002] “Collaborating on Project
Success”, Jim Johnson, Karen D. Boucher, Kyle
Connors, and James Robinson – Software
Magazine February/March 2001. Online at
http://www.softwaremag.com/archive/2001feb/
CollaborativeMgt.html
[Kerth 2001] “Project Retrospectives: A
Handbook for Team Reviews”, Norm Kerth –
Dorset House 2001
[Poppendieck 2003] “Lean Development: An
Agile Toolkit for Software Development
Leaders”, Mary Poppendieck - Addison-Wesley
To Be Published
[Schwaber 2002] “Agile Software Development
with SCRUM”, Ken Schwaber and Mike
Beedle - Prentice Hall 2002
[Senge 1990] “The Fifth Discipline”, Peter
Senge – Random House 1990
[Weinberg 1997] “Quality Software
Management: Systems Thinking”, Gerald
Weinberg – Dorset House 1997

